40m 2-element Wire Beam: Parasitic → Phased Array Conversion

Updating the 4th-Generation
Stealth All-Band
Electrically Reversible
Directional Array

Jeff Blaine – ACØC Presented to the KC DX Club – 25 April 2011

Array Overview

40m Simulation - MMANGAL

DE/Reflector Switching

Control Board - As Mounted

4th Gen 2-ele Wire Beam - Results

Informal testing of gain/fb:

- Consistently strong signal East (beaming east)
- Consistently weak signal West (beaming west)
- SWR swing between direction change too great
- o F/B poor beaming East, worse beaming West

In contest performance:

- Far better performance than prior design
- Good 40m East beaming results
- Poor 40m West beaming results
- Consistently high Q count in contests often better than 20m!

Anecdotal vs. Measured

- o RVM results needed
- West element hard to tune (very broad response)

40m Beam - Parasitic to Phased Conversion

Measuring the Baseline

W8WWV Reverse Simulation Overview

Measure Element RF Currents with VNA + Mux -Magnitude/Phase

Load Data into Simulation Model Simulation
Generates
Plot of Actual
Antenna
Performance

W8WWV RVM System Sensor

- Sensor located at each element
- Feeds N2PK VNA
- Measures
 relative
 current/phase
 for each
 element

Baseline for Perspective: Dipole

- Dipole at same height and same geometry as wire beam elements
- Gain4.06 dBi @ 45 deg
- Serves as baseline

Ideal Parasitic Model Predictions

- DE:
 - o 1 A
 - o 0 deg
- REF:
 - o 0.817 A
 - o -149 deg
- Performance
 - Gain 7.8 dBi @ 45 deg= 3.75 dBd @ 45 deg
 - o 13 db f/b approx @ 45 deg

Measured Reality – East Beaming

- RVM Measured Values
- Inverse Model Plot

Measured Reality - West Beaming

- RVM Measured Values
- Inverse Model Plot

Measured Reality - Conclusions

Actual vs. Ideal:

- o Gain 1.5 db less than ideal (EZ-NEC5)
- o TOA ~10 degrees higher than ideal
- o Good response to 90 degree signals → more noise pickup

Root cause of poor pattern:

- Antenna trimmed for phase, current considered "given"
- But phase & current do interact AND vary with frequency
- Best: lengths and spacing independently adjustable

Complications:

- Adjacent metal items → unmodeled coupling and re-radiation effects
- o The stucco factor?
- There must be a better way...

The NEW Plan

- Move west elements away from stucco wall
- Move models to EZ-NEC5 (easier help)
- Closer look at inadvertent parasitic interactions
- Use phased drive to force proper current/phase
- RVM system used to measure actual element phase/currents

Sidebar: The Stucco Factor

Implications?

Migration to EZ-NEC5

40m Beam - Parasitic to Phased Conversion

Phased Drive Methodology

Lewallen "Simplest" AKA Christman Feed System

Ideal case:

- Element 1 = Element 2 (exactly)
- Phasing lines ½ are adjusted in length until each element has the right current/phase drive – and – the voltage and phase match at the feed point
- Further SWR match may be needed between "main feed" and shack coax run

Phasing:

- Via coax lines or L-net
- **NOT** simple delay based system
- See ON4UN LBDX for more

Christman Phasing – Key Steps

- Measure antenna (self and coupled Z) (VNA/MFJ)
- Calculate drive Z from measured data (ON4UN)
- Optional: Measure phase line values (VNA+ZPLOTS)
- Calculate phase line lengths (FEED2EL)
- Assembly & test
- Optional: SWR match to feed point

Measure Elements

- Drive Z calculated on element measurements or model data
- Each element alone and in combination
- Compensates for ACTUAL parasitic action
- 2-element array measure:

Measure Element 1 (r+Xj)	With Element 2
Self	Hidden
Coupled	Present

Christman Phasing – Key Steps

- Measure antenna (self and coupled Z) (VNA/MFJ)
- Calculate drive Z from measured data (ON4UN)
- Optional: Measure phase line values (VNA+ZPLOTS)
- Calculate phase line lengths (FEED2EL)
- Assembly & test
- Optional: SWR match to feed point

Calculating Drive Z: ON4UN

- ON4UN LBDX book → spread sheet tool
- w1mk-on4un-oh1tv-arrays.xls
- Big spread sheet → simple to use

CALCULATING MUTUAL IMPEDANCE AND ARRAY DRIVE IMPEDANCES

						by ON4UN	J-OHITV
CALCULAT	ING MUTUAL II	MPEDANCE	CALCULATING ARRAY DRIVE IMPEDANCES				
INPUTS	real	imag		action	real	imag	what?
ENTER Z11 -	00.01	5.994	self-Z EL1	ENTER Z11 (EL1)	36.51	5.994	self-Z EL1
ENTER Z22 -	00.01	5.994	self-ZEL2	ENTER Z22 (EL2)	36.51	5.994	self-ZEL2
FNTFR 712 - 721 -		11.0	e accepted 7	ENTER Z33 (EL3)			self-ZEL3
RESULT: Z12 :		19.87	= mutual Z				self-ZEL4
OR: Z12 :	7.00	-19.87	= mutual Z	ENTER Z55 (EL5)			self-ZEL5
40				ENTER Z66 (EL6)			self-ZEL6
To				ENTER Z77 (EL7)			self-ZEL7
30		+		ENTER Z88 (EL8)			self-ZEL8
Resis	tance			ENTER 99 (EL9)			self-ZEL9
20		+		ENTER Z12 = Z21	7	-19.87	Mutual Z12
	.			ENTER Z13 = Z31			Mutual Z13
10	$\overline{}$			ENTER Z14 = Z41			Mutual Z14
Reactance				ENTER Z15 = Z51			Mutual Z15
0				ENTER Z16 = Z61			Mutual Z16
10				ENTER Z17 = Z71			Mutual Z17
		1 - 1		ENTER Z18 = Z81			Mutual Z18
20				ENTER Z19 = Z91			Mutual Z19
Ω 0.1 0.2 0.3	3 0.4 0.5 Spacing (Wavelet	0.6 0.7 0.8	0.9 1.0	ENTER Z23 = Z32			Mutual Z23
	opusg (Tures	,		ENTER Z24 = Z42			Mutual Z24

•	Get it	+· ON	J4IIN	IBDX	book
			V I O T	レレレハ	OOK

-		_	
You can only spec	ify currents	in two elem	
	magn	anglo	set to ZER
	magn	angle	
ENTER I1 (mag, °)	1	0	curr el #1
mag, rad	1.00	0	
ENTER I2 (mag, °)	1	-145	curr el # 2
man rad	1.00	-2 53	
ENTER I3 (mag, °)	0	0	curr el # 3
mag rad	0.00	0.00	100
ENTER I4 (mag, °)	0	0	currel#4
mag rad	0.00	0.00	
ENTER I5 (mag, °)	0	0	currel#5
mag rad	0.00	0.00	
ENTER I6 (mag, °)	0	0	currel#6
mag rad	0.00	0.00	
ENTER I7 (mag, °)	0	0	currel#7
mag rad	0.00	0.00	
ENTER I8 (mag, °)	0	0	currel#8
mag rad	0.00	0.00	•
ENTER I9 (mag, °)	0	0	curr el # 9
may rau	0.00	0.00	
DRIVE IMPEDANCE	Real	lmag	
Zin EL1 =	19.38	18.26	Ω
Zin EL2 =	42.17	26.29	Ω

Christman Phasing – Key Steps

- Measure antenna (self and coupled Z) (VNA/MFJ)
- Calculate drive Z from measured data (ON4UN)
- Optional: Measure phase line values (VNA+ZPLOTS)
- Calculate phase line lengths (FEED2EL)
- Assembly & test
- Optional: SWR match to feed point

Calculating Lengths: FEED2EL

- From Feedline Master AC6LA Dan Maguire
- Tool inputs:
 - Individual element drive Z
 - Coax attributes Zo, VF, Loss
- Tool outputs:
 - Phase line lengths
 - Feed system loss
 - Feed point Z and SWR
- ac6la.com/feed2el.html

40m Beam - Parasitic to Phased Conversion

Construction Details

AC0C 40m Wire Phased V-Beam

- 2 wire v-elements
- Ends turned in Moxon-style, but no Moxon coupling
- ½ wave RG213
 feedlines bring
 feedpoint to attic
 floor
- Phasing switch box mounted near array master control board

Phasing Box - Schematic

Phasing Box – Front View

- Control switching integrates with shack antenna system master
- Separate phasing for each direction
- Board supports
 2 bands (40/30m)
- Added OMNI mode

Phasing Box – Cancelling the Xl

- Relay line length runs provide XI
- Easiest solution –
 use caps to offset
- Problem: currents are high, 10A++
- Doorknobs best solution

40m Beam - Parasitic to Phased Conversion

Results

Measured Element Response

Following Christman Phased Drive Modification

BEAMIN	IG WEST	BEAMIN	IG EAST	
Freq	I-ratio	Phase	I-ratio	Phase
=====	======	======	======	======
7000	1.11	-134	1.39	-145
7040	1.03	-137	1.21	-148
7080	0.86	-138	1.05	-151

Target values: 1.00i -145 degrees

Inverse Model Predictions

Sources										
	No.	Spec	ified Pos.	Actual Pos.		Amplitude	Phase	Туре		
		Wire #	% From E1	% From E1	Seg	(V. A)	(deg.)			
	1	1	0	0	1	1	0	SI		
•	2	5	0	0	1	1.21	-148	SI		
*										

	Sourc	es							×
So	urce	Edit							
				So	urces				
	No.	Spec	ified Pos.	Actual F	os.	Amplitude	Phase	Туре	
		Wire #	% From E1	% From E1	Seg	(V, A)	(deg.)		
	1	1	0	0	1	1	0	SI	
	2	5	0	0	1	1.03	-137	SI	

Parasitic vs. Phased

Gain:+2dB FB:+15db Noise:++ TOA:-9 deg SWR: Sweet

Conclusions

Phased drive benefits:

- Predictable current/phase
- Accommodates variations in mutual coupling
- Minimal trimming after assembly
- Delivers improved gain, F/B in real-world environments

Phased drive problems:

- Build complexity greater
- o More similar elements are → simpler to make bidirectional
- O Antenna changes → redo phasing lines

Contest Performance

---- 3rd Gen Array ---- 4th Gen Array -----

Q's	2010	2010	2010	2011	2011
Contest	RTTY RU	RTTY WPX	RTTY CQ DX	RTTY RU	RTTY WPX
80	208	177	11	134	150
40	83	147	503	427	452
20	565	419	348	389	352
15	24	184	111	72	141

----- Parasitic ----- Phased

Special Thanks To:

- For Elmering a "phasing novice," and cooking up excellent tools for the ham world's benefit...
 - o Greg Ordy, W8WWV
 - o Dan Mcguire, AC6LA

EZDZ, RVM

FEED2EL, ZPLOTS

- For materials contributed
 - o Jack Holzer, KD0MDA
 - o Rob Underwood, KORU
 - o Jerry Chamberlin, WA0JRJ
 - Dewey "Lucky" Jones, WODRJ