ACØC SB200 SLEEPER
 Xtreme Conversión

SB200 STOCK CONFIGURATION

* 2x572B glass triodes -320 W plate disipation
* 2400v idle; 2100v loaded @ 500ma
* 500w typical output (800w on fresh tubes)
* 80-10m operation

STOCK SB200 RF DECK

INITIAL MODS

* Power Supply Replacement
+ Larger diodes, caps, matched bleeders
+ Other electrolytics
* Replaced T/R relay
x Added soft-start circuit
* Replaced fan with 120 mm 80 CFM muffin
* Blackened RF compartment walls
* Dual speed fan
* Basic glitch protection

Fused anode + resistor
Diode clamps on B-/gnd and across meter

INITIAL RESULTS

* Original? tubes - 560w output max on 80 m
* Good signal quality reports
x Problems
+ Tune control - very sensitive
+ Input match problems on most bands
+ Loud relay
+ Glitching
+ Safe operation point for RTTY?

MODS - PART 2

* Replaced stock panel with black-face
* Vernier reduction drive added to tune control
* Replaced grid resistors

New tubes - China sourced

Meter backlight replaced with blue/white LED array

RCA -> SO239 RF INPUT

HARBAUGH PS BOARD \& METER BACKLIGHT

BLACK PANEL

VERNIER REDUCTION DRIVE MOD

RESULTS - PART 2

* New tubes - 850w PO 80m
$* 800 w \rightarrow 500 w$ after 20 hours operation time
$*$ Glitch event \rightarrow anode fuse blows $\rightarrow \uparrow$ grid current

Nice platform for $1970 \rightarrow$ basic shortcomings

SB200 - OEM DESIGN PROBLEMS

$\times 572 \mathrm{~b}$ is a fine SSB tube - other mode challanged

* No glitch protection
$\times \downarrow \mathrm{lp} \rightarrow \uparrow \mathrm{Z} \rightarrow$ insufficient load cap
\times No 160 m
\times No QSK
* No modern fault condition reporting
* No lp or Ig over-current protection
\times RF input - RCA jack

Next Step

LOOKING FOR A BETTER SOLUTION

SB200 SLEEPER - GOALS

* Modern (?) ceramic/metal tubes
* 1000w output under RTTY duty-cycle
* Full high-speed QSK capability
$\times 160 \mathrm{~m}$ coverage
* Silent operation at idle; noise to match loading
* Full fault condition monitoring \& reporting Modern cosmetic look - while preserving original "lines" - retro feel

572 B VS GI7B

Metric	$2 \times 572 \mathrm{~b}$	$1 \times \mathrm{xGl} 7 \mathrm{~b}$
Heater	6.3 v	12.6 v
Plate V	2100 v	2100 v
Plate I	500 ma	500 ma
Anode dis	320 w	350 w
Power Out	500 w	525 w
Const	Glass	Met/Cer
Cost	\$80/pr	\$40/ea
Supply	China only Russian Mil NOS	
ACOC serv lifetime	25 hours	???

EYES WIDE OPEN - GI7B DISADVANTAGES

* No performance curves available under typical ham application parameters
x Very little test data and engineering work published

Supply longevity ???

USE ONE - OR - TWO TUBES?

\times Worst case mode is RTTY

* 2100v * 500ma $=1050 w$ input (same condx as 572b pair)
* At 55\% efficiency \& 50w drive, plate disipation $=522 \mathrm{w}$
* 522 w worst case vs $350 w=$ fast tube death
* 522 w worst case vs $700 w=$ nirvana CONCLUSION: Two tubes are needed to fully utilize the stock power supply capacity

2XG17B SB200 - PROOF OF CONGEPT

GI7B - MINIMUM MODS REQUIRED

* Replace tubes / sockets
* Bypass input matching network
* Add 37 v bias board \& relay switching
* Add 12.6 v filament transformer
* Replace cathode circuitry
* Adjust metering
* Good news: B+ supply OK - 2050v @ 0.7A +

RF DECK - METERING CIRCUIT

CATHODE CIRCUIT ASSEMBLY

RF DECK
 BIAS BOARD

GRID CIRCUITRY

GIB - INITIAL TEST RESULTS

RTTY
 DUTY -
 TEMP
 PROFILE

Elapsed	Socket (A)	Body (B)	Anode plate (C)	Heatsink (D)	TX
0 min - idle	36	98	41	50	40
1 min	37	110	50	60	
2 min		130	n / m	70	46
3 min		150	60	75	
4 min		170	70	80	
5 min		170	70	85	
6 min	50	185*	70	95*	53-56

BAREFOOT - SIG QUALITY BASELINE

SDR AS SPECTRUM ANALYZER

* Full power test using PSK as 2-tone source
* $3^{\text {rd }}$-order products -31db down @ 1KW output

SDR AS SPECTRUM ANALYZER

* Easy way to check emission products
* Interesting results - lower power drive increases distortion products

EXPERT CONFIRMATION

From: Adam Farson [mailto:farson@shaw.ca]
Sent: Friday, January 23, 2009 4:34 PM
To: 'Charlie Mazoch'
Cc: Jeff Blaine
Subject: RE: [Fwd: RE: sb200 sleeper project - 22 Jan 09-2-tone testing results]
Hi Charlie,
Excellent work. I see that Jeff's best IMD3 figure is approx. -32 dBc at 1 kW PEP (referred to one of 2 equal tones, per ITU-R method). This is 7 dB better than the ITU-R spec, and is equivalent to 38 dB below 2-tone PEP.

That is superb by any measure.
Cheers for now, 73 ,
Adam VA70J/AB40J

PROOF OF CONCEPT RESULTS

* GI7B works well
* Stock SB200 TX provides great capability
* Signal quality very good with stock tank

Results FB - so on with the show!

Next Step
TANK MODS

TANK AND INPUT MATCHING

PLATE CHOKE PLACEMENT

TOROID HEATING

NEW 40/80M TOROID

* 200C wire
* High voltage insulating tape

STRANGE BEHAVIOR - 80M

* 4.0 mhz - 65\% efficiency
* 3.5 mhz - 56\% efficiency
* What's the cause...
+ Plate choke?
+ Fil choke?
+ Tank?

TANK Q VS, EFFICIENCY - TOROID HEATING

	Amp Eff	PD\%	Pd avg, 63w drive, 2500w b+, approx 1KW out
Starting point:	55.8%	79.5%	729 w
Finishing point:	65.3%	58.9%	648 w

DO **NOT** PUT YOUR FINGER HERE

Next Step

POWER SUPPLY MODS

POWER SUPPLY

B+ GLITCH FUSE - LOW TECH INSURANCE

Next Step

SB220 TRANSFORMER ADVENTURE

TRANSFORMER PLAN

Transformer from SB220
Specs

+ 2KW input
+1150vac secondary
+ 0.8A - ICAS?
+ 19 lbs weight
Performance
+B+3100v idle
+ B+ 2800 v loaded

SB200 VS, SB220 - SIZE COMPARISON

NOW THAT'S A SMOKE TEST

FRIED; STEP START RESISTORS

PLATE MA.

FEB
9

SB220 TX - DIED A FAST DEATH

SB220 TX - BODY COUNT

Spent most of the time today trying to get the various major problems rectified from the first test day and the exploding transformer.

Quite a bit of stuff screwed up. The body count included:

- Ig zener
- FET switch
- SS relay resistor
- 2 design errors, at least they look that way to me - fixed
- 2 DVM dead (part of the alpha tx checkout - hea, guess what, that 750 v ac mark on the dvm - they really do mean it!) including my 25 year old Fluke 77

TRANSFORMER - PLAN B

TRANSFORMER - ON TO PLAN B...

* Alpha 77pa TX
x 1100v @ 1A + capability
* With added variac - plate voltage adjustable from $1500 v-3500 v$

Easy testing of amp parameters at any B+ level
Far too large to fit inside SB200 case

VARIABLE B+ SUPPLY

POWER OUTPUT

VS,
PLATE VOLTAGE

Pours V - $40 \mathrm{~m}-65$ weir
1900- $705 w$
$2000-750 \omega$
$2100-800 w$
$2200-835 w$
$2300-870 w$
$2400-901 \omega$
2500 - 950ω
$2600-996 w$
1000 w out $/ 1690 \mathrm{in}$
2600V@650 ma $59.290 \times 15,4$
955 out 11550
$2500 @ 620 \quad 61.6 \% \times 14.7$
910 W
2400 e 620×14
865 @ $\begin{array}{r}2300 \\ 630 \mathrm{ma} / 1449 \\ 59.7 \times 13.3\end{array}$
$820 \mathrm{w} \quad \begin{aligned} & 2200 \\ & 600 \mathrm{ma}\end{aligned} 1320 \quad 62 \% \times 12.6$
$780 \mathrm{~W} / 2100 \times 590 \mathrm{ma} 62.9 \% \times 12$.
$730 \mathrm{w} / 2000590 \mathrm{ma} / 1180 \mathrm{in} 61.890 \times 11.2$

PLATE DISIPATION DETERMINED PRIMARLY BY PLATE VOLTAGE

BRAINS

WD7S TRIODE CONTROL BOARD

WD7S TRIODE CONTROL BOARD

* ADJUSTABLE WARM-UP TIMER
* ADJUSTABLE GRID OVER-CURRENT FAULT, AUTO-RESET
* ADJUSTABLE GRID OVER-CURRENT WARNING LED
* ADJUSTABLE PLATE OVER-CURRENT FAULT, SHUTS DOWN HV SUPPLY IN 8.3 mS
* STEP-START HV TURN ON
* TUNE/ARC, HV and AIR FAULT
* FULL BREAK-IN QSK - LESS THAN 2.1 MS
* T/R FAULT, TRANSFER RELAY HOT SWITCHING PROTECTION
* FULLY ADJUSTABLE OPERATING BIAS USING THE TL-431 ADJUSTABLE PRECISION REFERENCE
* SOLID STATE BIAS SWITCHING
* DUAL KEY-LINE BUFFERS, EITHER +5 TO +16 VDC OR GROUND WILL KEY THE AMPLIFIER
* FRONT PANEL STATUS OF ALL FAULT AND OPERATING CONDITIONS
x SOLID STATE RELAYS USED FOR ALL AC SWITCHING

WD7S TCB - TIGHT FIT - SERIOUS MODS

COOL AND QUIET

FAN CONTROL MODULE

FAN CONTROL MODULE

- Varisistors over tube heatsinks control PWM DC fan speed
* Cooling/noise scale to current amp load
* Front panel bar-graph indication of heatsink temp

HEATSINK PROTOTYPES

HEATSINK PROTOTYPE -TIGHT FIT

SNAP CRACKLE POP

GLITCH HAMMERS PLATE CHOKE

RELEIF HACKING OF HEATSINKS

MORE DEAD SOLDERS

* Parasitic resistors \& burned input circuits

KORU THERMAL IMAGING

TANK COUPLING CAP

TOROID INSULATOR HOT-SPOT

HEATSINK PERFORMANCE

VARIAC \& PLATE TX

CHEAP INSURANCE - 1KV@6A-400A PEAK

OOPS - METER LEAD SHORTED TO B+ LINE

mpinpa
IIIIIII
JAN 28

Fault lights. All are red except the Ig line.
That's a dual color led.
Flashes yellow if you exceed the grid warning current level (does not trigger a fault). And will go red if the Ig max is exceeded causing a fault.

TX LED -

RED when the PTT line is keyed

Status LEDs

They should GREEN when are all a "go".

The "ready" L yellow while v waiting the an warm up.

\qquad
-
\square

E R

FRONT PANEL STATUS \& CONTROL

SWR FAULT - TX HOT MODULE

MULTIFUNCTION POWER SWITCH

POWER - STTANDBY/OP TOGGLE

		Power Supply
		SB-200 CI7B conversion
C.Z1	AC0C	

QSK - FAST \& QUIET

QSK RELAY AND RF DETECTION

QSK TR
 SWITCHING

INPUT NETWORKS - NOT EQUAL

Freq	Pdrive	B+	Ip	Pln	POut	Eff	Pd
1.8	58 w	2000	505 ma	1010 w	693 w	62.8%	375 w
1.9	58 w	2000	530 ma	1060 w	741 w	64.4%	377 w
2.0	58 w	2000	500 ma	1000 w	695 w	63.7%	363 w

Freq	Pdrive	B+	Ip	PIn	POut	Eff	Pd
1.8	58 w	2000	565 ma	1130 w	818 w	67.3%	370 w
1.9	58 w	2000	505 ma	1018 w	765 w	69.5%	311 w
2.0	58 w	2000	500 ma	1000 w	725 w	66.5%	333 w

INPUT MATCHING NETWORKS

* PI network on all bands
× $160 \mathrm{~m} / 80 \mathrm{~m}$ networks share the 80 m position, band selected by relay
\times Toroids don't heat like the OEM air coils did

TRANSFORMERS

TRANSFORMER OPTIONS

* Requirements
+ Approx 1000vac secondary @ 700ma typical plate Ip
+ Doubler configuration means 1.4A CCS secondary
* Harbaugh/Dahl Solution
+ 1000vac @ 0.8a CCS
+ 35C rise
+ More aggressive options discouraged

TRANSFORMER - THE FINAL SOLUTION

* Electronic Product Designs - Peter Eggimann
+ 240v primary, 980 KV secondary
+ 1.4A CCS rated @ 92C rise
+ All components from 200C materials
+ Approx 30 lbs - 4.5" stack (SB200 2.1 stack")
+5 primary taps allow secondary fine-tuning 2300-2560v loaded
+ Imbedded varisistor for direct internal temp measurement
+ Fits fully inside enclosure

NEXT STEPS

ROCK \& ROLL...

INTERESTING TRENDS

* As the drive level is increased, the efficiency increases
$+5 \%$ as drive goes from 30w to 60w
* As the voltage level drops, the efficiency drops:
-5% as $+500 v$
* As voltage level increases, the power output increases:
$+30 \%$ as $+500 v$
* As power out increase, the plate dis increases:
$+20 \%$ as power output $+100 \%$

PENDING

* R\&R copper tank
+ Copper for 40m (toroid heating)
+ Dedicated 80m \& 160m toroids
+ Optimize values for min plate disipation
* SWR \& Tuner interface
* B+ glitch fusing \& surge resistors vs. Ip overcurrent
* Wire dress \& general housekeeping
* Case metal work
+ Cutouts for improved fan intake (bottom)
+ Cutout heatsink facing RF deck (cap reduction)
+ Custom RF cage cover
+ Final heatsinks

PENDING

* Document cleanup
* QSK switching performance testing
* Power supply PCB cleanup

Install new transformers

UNANSWERED QUESTIONS

* Operation point vs. plate disipation vs. mode Optimal Q

Optimal bias point

LESSONS LEARNED

* Educational justification of \$\$ is critical
* You can get killed very damn easy

SPECIAL THANKS TO ELMERS

* W5VIN
\times KORU
* Jack Matlack Metalworking
* WS4Y
\times VB70J/AB40J
AG6K

