

SB200 STOCK CONFIGURATION

- × 2x572B glass triodes 320W plate disipation
- × 2400v idle; 2100v loaded @ 500ma
- × 500w typical output (800w on fresh tubes)
- × 80-10m operation

STOCK SB200 RF DECK

INITIAL MODS

- × Power Supply Replacement
 - + Larger diodes, caps, matched bleeders
 - + Other electrolytics
- Replaced T/R relay
- Added soft-start circuit
- × Replaced fan with 120mm 80 CFM muffin
- Blackened RF compartment walls
- × Dual speed fan
- Basic glitch protection
 - + Fused anode + resistor
 - Diode clamps on B-/gnd and across meter

INITIAL MODS

Low Voltage Keyer

INITIAL RESULTS

- × Original? tubes 560w output max on 80m
- Key Good signal quality reports
- × Problems
 - + Tune control very sensitive
 - + Input match problems on most bands
 - + Loud relay
 - + Glitching
 - + Safe operation point for RTTY?

MODS - PART 2

- Replaced stock panel with black-face
- × Vernier reduction drive added to tune control
- Replaced grid resistors
- × New tubes China sourced
- Meter backlight replaced with blue/white LED array

RCA -> SO239 RF INPUT

HARBAUGH PS BOARD & METER BACKLIGHT

BLACK PANEL

(c) 2009 ACOC Jettrey Blaine All rights reserved

VERNIER REDUCTION DRIVE MOD

.....

RESULTS - PART 2

- × New tubes 850w PO 80m
- × 800w \rightarrow 500w after 20 hours operation time
- × Glitch event → anode fuse blows → ↑ grid current
- × Nice platform for 1970 \rightarrow basic shortcomings

SB200 - OEM DESIGN PROBLEMS

- × 572b is a fine SSB tube other mode challanged
- × No glitch protection
- × ↓ Ip \rightarrow ↑ Z \rightarrow insufficient load cap
- × No 160m
- × No QSK
- × No modern fault condition reporting
- × No Ip or Ig over-current protection
- × RF input RCA jack

Next Step

LOOKING FOR A BETTER SOLUTION

SB200 SLEEPER - GOALS

- × Modern (?) ceramic/metal tubes
- × 1000w output under RTTY duty-cycle
- × Full high-speed QSK capability
- × 160m coverage
- Silent operation at idle; noise to match loading
- × Full fault condition monitoring & reporting
- Modern cosmetic look while preserving original "lines" – retro feel

572B VS GI7B

Metric	2x572b	1xGI7b
Heater	6.3v	12.6v
Plate V	2100v	2100v
Plate I	500ma	500ma
Anode dis	320w	350w
Power Out	500w	525w
Const	Glass	Met/Cer
Cost	\$80/pr	\$40/ea
Supply	China only	Russian Mil NOS
ACOC serv lifetime	25 hours	???

EYES WIDE OPEN - GI7B DISADVANTAGES

- No performance curves available under typical ham application parameters
- Very little test data and engineering work published
- Supply longevity ???

USE ONE - OR - TWO TUBES?

- × Worst case mode is RTTY
- × 2100v * 500ma = 1050w input (same condx as 572b pair)
- At 55% efficiency & 50w drive, plate disipation = 522w
- × 522w worst case vs 350w = fast tube death
- × 522w worst case vs 700w = nirvana
- CONCLUSION: Two tubes are needed to fully utilize the stock power supply capacity

2XGI7B SB200 - PROOF OF CONCEPT

GI7B – MINIMUM MODS REQUIRED

- Replace tubes / sockets
- Sypass input matching network
- Add 37v bias board & relay switching
- × Add 12.6v filament transformer
- Replace cathode circuitry
- × Adjust metering

K Good news: B+ supply OK – 2050v @ 0.7A +

RF DECK – METERING CIRCUIT

CATHODE CIRCUIT ASSEMBLY

RF DECK BIAS BOARD

GRID CIRCUITRY

GI7B - INITIAL TEST RESULTS

E20EI	2					
TEST F	- 4	, /d/e =	90mA		í í	
80m-7 (100 - Au	5 19	HV	×	
46 5DW IN	760 out	550	140	2125	16,51	j.l
38 40W IN	660 out	500	110	2150	17,4-1	
29 30WIN	530 007	420	80	2175	18.35	1
20WIN	390 out	330	50	ZZOD	- <u>1</u> 2	
SOW IN	600 out	580	150	2100		1
55W IN	870 OUT	620	180	2075	15.81	
60 w IN	890 out	610	190	2075	14,8(ų.
65W IN	945 out	650	7200	2075	1451	
					C.	
	11V				()	
Pad est	65/Pin=20	75 x 0.68	5= 1350	w Pin		
			-945	w Po	\cdot (C)	
			and the second	w Plate	dis C	4.
			=70	2	$f = \int f$	2
	Sow Pin = 2	100 × 0,5	8 = 1220	> Pin	C,	-
			- 800	w Po	Ç	J .
				W Phr	ze dis(
			=66		(Ċ.
	40W/ 212	5 X.54	0 = 115	o Pin		
				w Po		
			and the second se	w Plat	e Dis (3
			= 590			
) - 2 ¹ - 2 ⁻¹				()	

RTTY DUTY -TEMP PROFILE

Elapsed	Socket (A)	Body (B)	Anode plate (C)	Heatsink (D)	TX
0 min – idle	36	98	41	50	40
1 min	37	110	50	60	
2 min		130	n/m	70	46
3 min		150	60	75	
4 min		170	70	80	
5 min		170	70	85	
6 min	50	185 *	70	95 *	53-56

BAREFOOT - SIG QUALITY BASELINE

SDR AS SPECTRUM ANALYZER

- × Full power test using PSK as 2-tone source
- × 3rd-order products -31db down @ 1KW output

SDR AS SPECTRUM ANALYZER

- × Easy way to check emission products
- Interesting × results - lower power drive increases distortion products

-84db 25 db difference

Conclusion: Lower power results in poorer IMD performance

EXPERT CONFIRMATION

From: Adam Farson [mailto:farson@shaw.ca] Sent: Friday, January 23, 2009 4:34 PM To: 'Charlie Mazoch' Cc: Jeff Blaine Subject: RE: [Fwd: RE: sb200 sleeper project - 22 Jan 09 - 2-tone testing results]

Hi Charlie,

Excellent work. I see that Jeff's best IMD3 figure is approx. -32 dBc at 1 kW PEP (referred to one of 2 equal tones, per ITU-R method). This is 7 dB better than the ITU-R spec, and is equivalent to 38 dB below 2-tone PEP.

That is superb by any measure.

Cheers for now, 73, Adam VA70J/AB40J

PROOF OF CONCEPT RESULTS

- × GI7B works well
- Stock SB200 TX provides great capability
- Signal quality very good with stock tank
- **x** Results FB so on with the show!

Next Step

TANK AND INPUT MATCHING

PLATE CHOKE PLACEMENT

TOROID HEATING

NEW 40/80M TOROID

× 200C wire

High voltage insulating tape

STRANGE BEHAVIOR - 80M

- × 4.0 mhz 65% efficiency
- × 3.5 mhz 56% efficiency
- What's the cause...
 + Plate choke?
 + Fil choke?
 + Tank?

TANK Q VS. EFFICIENCY - TOROID HEATING

	Amp Eff	PD%	Pd avg, 63w drive, 2500w b+, approx 1KW out
Starting point:	55.8%	79.5%	729w
Finishing point:	65.3%	58.9%	648w

DO **NOT** PUT YOUR FINGER HERE

(c) 2009 ACOC Jeffrey Blaine All rights reserved

Next Step

POWER SUPPLY MODS

POWER SUPPLY

B+ GLITCH FUSE – LOW TECH INSURANCE

Next Step

SB220 TRANSFORMER ADVENTURE

TRANSFORMER PLAN

- × Transformer from SB220
- × Specs
 - + 2KW input
 - + 1150vac secondary
 - + 0.8A ICAS?
 - + 19 lbs weight
- × Performance
 - + B+ 3100v idle
 - + B+ 2800v loaded

SB200 VS. SB220 - SIZE COMPARISON

NOW THAT'S A SMOKE TEST

FRIED: STEP START RESISTORS

SB220 TX - DIED A FAST DEATH

SB220 TX - BODY COUNT

Spent most of the time today trying to get the various major problems rectified from the first test day and the exploding transformer.

Quite a bit of stuff screwed up. The body count included:

- Ig zener
- FET switch
- SS relay resistor
- 2 design errors, at least they look that way to me fixed
- 2 DVM dead (part of the alpha tx checkout hea, guess what, that 750v ac mark on the dvm – they really do mean it!) including my 25 year old Fluke 77

TRANSFORMER – PLAN B

TRANSFORMER - ON TO PLAN B...

- × Alpha 77pa TX
- × 1100v @ 1A + capability
- With added variac plate voltage adjustable from 1500v – 3500v
- Easy testing of amp parameters at any B+ level
- Far too large to fit inside SB200 case

VARIABLE B+ SUPPLY

POWER OUTPUT VS. PLATE VOLTAGE

POVSV - 40M - 65Wir
$ \begin{array}{rcl} 1900 - & 705 \ \omega \\ 7000 - & 750 \ \omega \\ 2100 - & 800 \ \omega \\ 2200 - & 835 \ \omega \\ 2300 - & 870 \ \omega \\ 2400 - & 901 \ \omega \\ 2500 - & 950 \ \omega \\ 2600 - & 996 \ \omega \end{array} $
1000 w 0 ut /1690 in 2600 & 650 ma 59,270 ×15,4 955 out /1550 2500 & 620 61.690 ×14.7
910 W 2400 & 620 61.290 × 14 865 @ 630 ma/1449 59.7 × 13.3 820 600 ma /1320 6290 × 12.6 780 W/ 2100 × 590 ma 62.790 × 12. 730 W/ 2000 590 ma /1180 in 61.890 × 11.2

PLATE DISIPATION DETERMINED PRIMARLY BY PLATE VOLTAGE

65w optorie		4	Or		н 1	
1900v /2125	70	<u>Pa</u> 485	<u>P.</u>	IN IN 1775	brid	DA
TIOUTETES			810	1900×645=1225	560	60,4%
1500 Avg	65	497	765	1900 x 630 = 1197	500	58.5%
	59	505	79	1910 × 600 = 11 +6	420	55.9%
2000/2250		590	-860	2000× 690 = 1380	540	\$ 7.2%
SOGAVA		580	805	2000 × 660 = 1320	4,60	66,120
2 ochivi	55	569	740	2000 x 625 = 1250	400	54,58
2100/	70	596	930	2110× 690=1456	500	57%
1.20	65	619	810	2125 × 670 = 1 +24	460	56,58
620	69	656	810	2130 × 665=1416	400	53.7%
2500 /	70	790	HOS	7500 x 730 =1815	400	56.7%
790 AV9	65	770	1045	2500 x700 =1750	410	54.0
[] O May	59	808	965	2520x 680 = 1714	350	52.92
2600 1/	70	813	1145	2600 x730 =1898	460	56.7%
87.Q. JA	65	815	1100	2605 x710 =1850	420	55.9
82924	59	813	1015	2620 × 675 = 1769	360	54.0
1-700 //		868	1185	2680×740=1983	\$60	56.2
870 prvo		833	1135	" ×710 = 1903	400	56.2
O BUN	59	877	1045	2680 x 695 = 1863	360	52,9%
24001/2650	70	701	1085	2 400 × 7/5 = 17/4	520	59,28
	65		1020	2400 ×685 = 16 4		58.170
3 700 ANG	5%	703	940	2400×660= 1584	+20	55.6%
2200/		642	970	2400×660= 1584 2200× 700 = 15970 2200× 680 = 1496	500 440	58.32
2200/ 610 AUG	64 57	697 630	920 850		380	51,1%

BRAINS

WD7S TRIODE CONTROL BOARD

WD7S TRIODE CONTROL BOARD

- × ADJUSTABLE WARM-UP TIMER
- × ADJUSTABLE GRID OVER-CURRENT FAULT, AUTO-RESET
- × ADJUSTABLE GRID OVER-CURRENT WARNING LED
- * ADJUSTABLE PLATE OVER-CURRENT FAULT, SHUTS DOWN HV SUPPLY IN 8.3 mS
- × STEP-START HV TURN ON
- × TUNE/ARC, HV and AIR FAULT
- FULL BREAK-IN QSK LESS THAN 2.1 MS
- × T/R FAULT, TRANSFER RELAY HOT SWITCHING PROTECTION
- FULLY ADJUSTABLE OPERATING BIAS USING THE TL-431 ADJUSTABLE PRECISION REFERENCE
- **×** SOLID STATE BIAS SWITCHING
- DUAL KEY-LINE BUFFERS, EITHER +5 TO +16 VDC OR GROUND WILL KEY THE AMPLIFIER
- * FRONT PANEL STATUS OF ALL FAULT AND OPERATING CONDITIONS
- × SOLID STATE RELAYS USED FOR ALL AC SWITCHING

WD7S TCB - TIGHT FIT - SERIOUS MODS

COOL AND QUIET

(c) 2009 ACOC Jeffrey Blaine All rights reserve

FAN CONTROL MODULE

FAN CONTROL MODULE

- Varisistors over tube heatsinks control PWM DC fan speed
- Cooling/noise scale to current amp load
- Front panel bar-graph indication of heatsink temp

HEATSINK PROTOTYPES

HEATSINK PROTOTYPE - TIGHT FIT

SNAP CRACKLE POP

GLITCH HAMMERS PLATE CHOKE

RELEIF HACKING OF HEATSINKS

MORE DEAD SOLDERS

× Parasitic resistors & burned input circuits

KORU THERMAL IMAGING

TANK COUPLING CAP

TOROID INSULATOR HOT-SPOT

HEATSINK PERFORMANCE

69.7

- 53.1

VARIAC & PLATE TX

INSTRUMENTATION

CHEAP INSURANCE - 1KV@6A-400A PEAK

OOPS - METER LEAD SHORTED TO B+ LINE

HEATHKIT LINEAR AMPLIFIER

That's a dual color led.

Flashes yellow if you exceed the grid warning current level (does not trigger a fault). And will go red if the lg max is exceeded causing a fault.

ARC

T/R

SWR

HV

lp

Ig

TEMP

TX LED -**RED** when the PTT line is keyed

PLATE MA.

800

GRID

The "ready" L yellow while v waiting the an

warm up.

Status LEDs

They should a **GREEN** when are all a "go".

H RE

F١

SS

FRONT PANEL STATUS & CONTROL

SWR FAULT - TX HOT MODULE

MULTIFUNCTION POWER SWITCH

POWER - STANDBY/OP TOGGLE

QSK – FAST & QUIET

QSK RELAY AND RF DETECTION

QSK TR SWITCHING

INPUT MATCHING

INPUT NETWORKS - NOT EQUAL

Freq	Pdrive	B+	lp	Pln	POut	Eff	Pd
1.8	58w	2000	505ma	1010w	693w	62.8%	375w
1.9	58w	2000	530ma	1060w	741w	64.4%	377w
2.0	58w	2000	500ma	1000w	695w	63.7%	363w

Pdrive	B+	lp	Pln	POut	Eff	Pd				
58w	2000	565ma	1130w	818w	67.3%	370w				
58w	2000	505ma	1018w	765w	69.5%	311w				
58w	2000	500ma	1000w	725w	66.5%	333w				
	58w	58w 2000 58w 2000	58w 2000 565ma 58w 2000 505ma	58w 2000 565ma 1130w 58w 2000 505ma 1018w	58w 2000 565ma 1130w 818w 58w 2000 505ma 1018w 765w	58w 2000 565ma 1130w 818w 67.3% 58w 2000 505ma 1018w 765w 69.5%				

INPUT MATCHING NETWORKS

- PI network on all bands
- 160m/80m
 networks share
 the 80m
 position, band
 selected by relay

 Toroids don't heat like the OEM air coils did

TRANSFORMERS

(c) 2009 ACOC Jeffrey Blaine All rights reserve

TRANSFORMER OPTIONS

× Requirements

- Approx 1000vac secondary @ 700ma typical plate lp
- + Doubler configuration means 1.4A CCS secondary

× Harbaugh/Dahl Solution

- + 1000vac @ 0.8a CCS
- + 35C rise
- + More aggressive options discouraged

TRANSFORMER - THE FINAL SOLUTION

- × Electronic Product Designs Peter Eggimann
 - + 240v primary, 980 KV secondary
 - + 1.4A CCS rated @ 92C rise
 - + All components from 200C materials
 - + Approx 30 lbs 4.5" stack (SB200 2.1 stack")
 - + 5 primary taps allow secondary fine-tuning 2300-2560v loaded
 - + Imbedded varisistor for direct internal temp measurement
 - + Fits fully inside enclosure

NEXT STEPS

ROCK & ROLL...

INTERESTING TRENDS

- As the drive level is increased, the efficiency increases
 +5% as drive goes from 30w to 60w
- As the voltage level drops, the efficiency drops:
 -5% as +500v
- As voltage level increases, the power output increases:
 +30% as +500v
- As power out increase, the plate dis increases:
 +20% as power output +100%

INDER-CHASSIS LAYOUT

PENDING

- × R&R copper tank
 - + Copper for 40m (toroid heating)
 - + Dedicated 80m & 160m toroids
 - + Optimize values for min plate disipation
- × SWR & Tuner interface
- × B+ glitch fusing & surge resistors vs. Ip overcurrent
- × Wire dress & general housekeeping
- × Case metal work
 - + Cutouts for improved fan intake (bottom)
 - + Cutout heatsink facing RF deck (cap reduction)
 - + Custom RF cage cover
 - + Final heatsinks

PENDING

- × Document cleanup
- × QSK switching performance testing
- Power supply PCB cleanup
- Install new transformers

UNANSWERED QUESTIONS

- × Operation point vs. plate disipation vs. mode
- × Optimal Q
- × Optimal bias point

LESSONS LEARNED

- × Educational justification of \$\$ is critical
- × You can get killed very damn easy

SPECIAL THANKS TO ELMERS

- × W5VIN
- × KORU
- × Jack Matlack Metalworking
- × WS4Y
- × VB70J/AB40J
- × AG6K