An Introduction to Roofing Filters

Jeff Blaine – ACØC CADXA – 6 Oct 2011

First: The Required IMD Refresher

Virtually Math Free!

Heterodyne Receiver 101

CA 2004 – TEN-TEC ORION

IMD and the 3rd Order Rule

- IMD Inter Modulation Distortion
- Caused by nonlinear processes all components can be nonlinear
- 3rd Order Rule IMD products increase at 3x signal levels
- IMDDR3 or **DR3** Third Order Intermodulation Limited Dynamic Range
- Other "order" IMD products also exist but 3rd order is the trouble maker

Third Order IMD - Graphically

- Assume inputs at 7.010, 7.020
- IMD3 products located at 7.000, 7.030

3rd Order IMD Limited Dynamic Range

- IMDDR3: Standard term (written several ways)
- A measure of

 the strength needed for 2 signals
 which cause an IMD product that
 extends just above the noise floor
- Standard signal spacing 2/5/10/20 KHz → 2 KHz key

- Often called THE key receiver metric (for RX comparisons)
- Superhets closer spacing, worse DR3 performance

In-Band vs. Out-of-Band DR3

- Out-Of-Band:
 - Roofing filter width < test tone spacing width
 - o Test tones are attenuated by roof
 - o DR3 value is limited by UPSTREAM components (includes the roof)
- In-Band:
 - Roofing filter width >> test tone spacing
 - o Test tones are not significantly attenuated by the roof
 - o DR3 value is limited by DOWNSTREAM stages (2nd mixer ?)

What About IP3?

- IP3 is a calculation based on the SLOPE of input signal and IMD products:
 - o $IP3 = \frac{1}{2}$ (IMDDR3) + Input Power or 1.5 (IMDDR3) + noise floor
- Can also be extrapolated from rig measurements
- The point where the two lines cross is called the Intercept Point
- Assumes the 3rd order law is followed
- Further complicated: input (IIP3) and output (OIP3) definitions
- Personal opinion: IMDDR3 is typically a more precise term

IP3 Example – FT-1000 MP

From: Smith, Improved Dynamic Range, QEX Jul/Aug 2002 – data by W1RFI/ARRL

IP3 Example – IC-765

From: Smith, Improved Dynamic Range, QEX Jul/Aug 2002 – data by W1RFI/ARRL

Sidebar: Understanding the Plots

- Signal generator \rightarrow Antenna Input
- 450 KHz Spectrum Analyser tied to output of 2nd IF
- Shows what the 3rd mixer "sees" isolates 1st IF
- Plots in this presentation actual data NOT simulated
- IMD testing setup is very difficult especially the signal source

IMD Products: A Ghost in the Machine?

"Rare DX Here" A Roofing Filter Story in Pictures

• © Jeff Blaine ACOC 2011, all rights reserved

A Quiet Day in DX Land

What the 3rd Mixer Sees – Lone DX station – IMD products not a factor

Until N7DD and N6SS Arrive

What the 3rd Mixer Sees – Two strong signals in-band – IMD everywhere

Engaging Our OEM Roofing Filter (~6+ Khz)

the 3rd Mixer Sees – 6 KHz BW roof – minor reduction in signals -> IMD

Finally, the 2.4 Khz Filter

What the 3rd Mixer Sees – 2.4 KHz NS roof – Significant sig reduction \rightarrow IMD \blacktriangledown

Out-O

Roofing Filters

Basics, Capabilities, Limitations

Roofing Filter Basics

- Where: First filter, as close to the antenna as possible 1st IF typical
- Why: Protects following circuits from nonlinear operation due to strong out of band signals
- What: MCF or discrete crystal construction
- Width: Sized to pass the widest mode of operation
- Improve DR3 begins with spacing ¹/₄ filter width, or more

Rodhe, Recent Advances in Receiver Design, QST Nov 1992

Roofing Filter Capabilities

• IMD products

- Result from non-linear operation (overload)
- Key point \rightarrow IMD products are generated <u>within the RX</u> chain
- o Typical IMD sources: pre-selector, mixer and switching
- Action: Attenuates adjacent strong signals → reduces / eliminates IMD products

• Other benefits

- Reduce AGC pumping \rightarrow AGC loop after the roof
- o DSP has less bandwidth (information content) to process

Roofing Filter Limitations

- Originally not intended as selectivity filters
- Rather, supplement to DSP (final) filtering
- Cannot improve in-band DR3
- A good filter reveals the next weaker link in the chain
- Cannot filter in-band interference (splatter, key clicks)

Roofing Filter Limitations – Key Clicks

Comparison of 3 msec vs 10 msec rise time

Courtesy NCOB Rob Sherwood

- Faster rise time, wider bandwidth -> more "clicks"
- Clicks are not filterable the energy is "in-band"

Roofing Filter Limitations – Sidebands

Courtesy NCOB Rob Sherwood

- Even properly adjusted transmitters not perfect
- Splatter not filterable the energy is "in-band"

What About

Up Conversion vs. Down Conversion?

Down Conversion vs. Up Conversion

- Up Conversion Architecture 70 Mhz typical 1st IF
 - o Uniform performance over entire frequency range
 - Needs VHF roofing filters (wide/cheap **or** narrow/expensive)
 - Excellent image rejection
 - o Close-in DR varies
- Down Conversion Architecture 9 Mhz typical 1st IF
 - o Performance near IF is not uniform
 - o Image rejection near ham bands requires design attention
 - Needs only HF roofing filters (narrow/cheap)
 - o Close-in DR generally good, even in lower end models
- Roofing filters found in both architectures serving the same purpose - protection

What's Driving Down-Conversion Rigs?

1) Market focus on close-in specs vs. image rejection

2) Crystal Performance vs. Cost - optimal around 9 Mhz

3) Crystal cost increases with frequency:

- o ~ 3x going up
- o ~ 2x going down

4) HF vs. VHF front ends are cheaper in most other ways

Up-conversion VHF OEM Filters – Filter on VNA

- Yaesu FT2000 Roof vs. NS Production Version Roof ACOC 8/29/2010
- 3/6 KHz OEM filters:
 6-7 KHz @ -6 db
 15-18 KHz @ -50 db
- NS roofing filter:
 2.4 KHz @ -6 db
 5.6 KHz @ -50 db
- Single signal selectivity for SSB
- Improves DR3 on all spacing's from 600 Hz and up – great for CW/digi

• © Jeff Blaine ACOC 2011, all rights reserved

Up-conversion VHF Roofing Filters – Filter In Rig

- Lot 19 FT-2000D
- Measured values

- o 6.3 KHz @ -6 db
- o 18.5 Khz @ -50 dbo \$11

- 2.4 KHz NS Filter
 - o 2.2 KHz @ -6 db
 - o 5.3 KHz @ -50 db
 - o \$300

• © Jeff Blaine AC0C 2011, all rights reserved

Icom Has Better Marketing Luck Than Yaesu???

3kHz filter characteristics (50kHz span)

• "3 Khz" seems to mean different things to different companies...

Down-Conversion HF Roofing Filters - VNA

Elecraft 8-pole 400 Hz & 1.8 KHz Inrad Filters

Down-Conversion HF Roofing Filters - VNA

Yaesu FT-dx5000 300 Hz filter

• © Jeff Blaine ACOC 2011, all rights reserved

Roofing Filters – Bandwidth Tip

- Use a wider roof if conditions allow less fatigue
- Crystal filter designs \rightarrow focus on steep skirts
- Trade-off is uneven "group delay" → ringing
- Group delay is a problem for RTTY
- DSP implementations (regarding ringing) vary \rightarrow IIR types best

• © Jeff Blaine ACOC 2011, all rights reserved

The Last Word on the DR3 Spec

How Much is Enough?

DR3 – How Much is Enough?

- Expert Opinion
 - o NCOB Rob Sherwood: 80 db @ 2 Khz CW, 70 db SSB
 - o W8JI Tom : 80-85 db @ 2 Khz
- Contest Community Examples
 - o K3LR Runs IC-7800 (85 db)
 - o W3LPL Mix of 10 FT-1000 (78 db) + 2 K3
 - o K5G0 Runs mix of 3 K3 + 6 IC-765 (DR3???)
 - o NR5M Mix of IC-7800, IC-7700, ProIII
 - o P49X Mix of Pro3, FT990, FT1K, K3
 - o WRTC 2010 5 of top 10 teams ran FT-1000
- How much is enough?

80 db CW + 70 db SSB **most of the time**

Published Test Result Example

Yaesu FT-dx5000

Yaesu Representations

• © Jeff Blaine AC0C 2011, all rights reserved

ARRL – December 2010

Table 1 -

Yaesu FTpx5000, serial number 00020034

Manuf acture Frequency covers transmit, 1.8-2, 5.3715, 5.4035, 18.068-18.168, 5.024 MUT	r's Specifi go: Receive 3.5-4, 5.330 7-7.3, 10.1- 21-21.44, 20	fic ations 0.03-60 MHz; 6, 6, 3466, 5, 3665, 10, 15, 14-14, 35, 1, 89-24, 99, 28-29, 7,	Measured i Receive and tr	in the ARRL ansmit, as specif	Lab led.	
Power consumption no signal, 70 W transmit, 200 W	on at 117 V (signal pres	ac: receive, ent, 80 VA, VA.	Receive, no sk present, max 481 VA at 20	anal, 61 VA; recel audio, 66 VA; tra 0 W RF output.	ve signal insmit,	
Modes of operation PKT.	n: SSB, CW	, AM, FM, RTTY,	As specified.			
Receiver			Receiver Dy	namic Testing	L	
SSBJCW sensitiv 10 dB S+NN:0 1.8-30 MHz, 0.2 1.25 µV (Amp 2 below 1.8 MHz,	ty: 2.4 кHz t .5-1.8 MHz, 2 µV (Amp 2)). Ртеатр п	andwicth, 2.0 μV; ; 50-54 MHz, of available	Noise floor (ME 600 Hz rooff Preamp Of 0.505 MHz -1 1.0 MHz -1 16 MHz -1 16 MHz -1	25), 500 Hz band ig filter; r 1 2 Gm) (dBm) (dB 16 17 18 26 -136 -1; 26 -136 -1; 26 -136 -1; 20 -131 -1;	144dTh, 2mj 43 42	
Noise figure: Not AM sensitivity: 6 + 0.5-1.8 MHz, 6 6 meters, 1 µV	specified. Hz bandwid µV; 1.9-30 M (Amp 2).	th, 10 dB S+N/N: IHz, 2 μV (Amp 2);	14 MHz, preamp off/1/2: 21/11/5 dB 10 dB (S+N)/N, 1+KHz, 30% modulation, 9 kHz fitter, 15 kHz rooting fitter: 1.0 MHz 8.60 µV 3.8 MHz 0.47 µV (Preamp 2 on)			
FM sensitivity: 15 0.1-30 MHz, 0.5 0.35 µV (Amp 2 Spectral display s	kHz bandwi 5 µV (Amp 2)) ensitivity: No	dth, 12 dB SINAD: ; 50-54 MHz, xt specified.	For 12 dB SINAD, preamp 2 on: 29 MHz 0.22 µV 52 MHz 0.23 µV -115 dBm maximum with optional			
Biocking gain con	tpression: N	ot specified.	Gain compress 600 Hz roofs 20 k Prag 3.5 MHz 136' 50 MHz 130' 50 MHz 130'	ston, 500 Hz ban ng filter: Hz offsef 5/2 mp off1/2 Ph /146/142 dB 13 /148/142 dB 13 /141/137 dB 13	swidth, KHz offset amp off 57/136° dB 57/136° dB 77/127 dB	
AREL Lab Two-To	the IMD Test	ing (300 Hz bandwi	th 300 Hz root	ing filteri**	UN LIDL	
Band Preamp 3.5 MHz Off	Spacing 20 kHz	Input Level -17 dBm -11 dBm	Measure IMD Leve -126 dBn -97 dBn	Measured MDDR 109 dB	Calculate MP3 +38 dBm +32 dBm	
14 MHz/Off	20 kHz	-12 dBm -5 dBm 0 dBm	-126 dBn -97 dBn -84 dBn	n 114 dB n	+45 dBm +41 dBm +42 dBm	
14 MHz/Pre 1	20 kHz	-24 dBm -22 dBm	-136 dBr -97 dBr	n 112 dB	+34 dBm +28 dBm	
14 MHz/Pre 2	20 kHz	-36 dBm -22 dBm	-143 dBr -97 dBr	n 107 dB	+18 dBm +16 dBm	
14 MHz/Off	14 MHz/Off 5 kHz -12 dBm -6 dBm 0 dBm		-126 dBn -97 dBn -82 dBn	n 114 dB	+45 dBm +40 dBm +41 dBm	
14 MHz/Off	2 KHZ	-12 dBm -6 dBm 0 dBm	-126 dBn -97 dBn -82 dBn	n 114 dB	+45 dBm +40 dBm +41 dBm	
50 MHz/Off	20 kHz	-14 dBm	-120 dBr	106 dB	+39 dBm	
		-8 dBm	-9V CBR	n	+37 dBm	
Second-order inte	roept point-	-8 dBm Not specified.	14 MHz, Prear	n np off/1/2:+65/+7	+37 dBm 1/+71 dBm	
Second-order inte DSP noise reduct	roept point:	-8 dBm Not specified. cified.	14 MHz, Prear Variable, 30 di	n np of01/2: +65/+7 3 maximum.	+37 dBm 71/+71 dBm	
Second-order Inte DSP noise reduct Notch filter depth:	Not specific	-8 dBm Not specified. cified. id.	54 MHz, Prear Variable, 30 di Manual: >70 di Affack time: (n np of01/2: +65/+1 3 maximum. 8, auto: >70 dB. 10 ms.	+37 dBm 71/+71 dBm	

ARRL Lab Two-Tone IMD Testing (300 Hz bandwidth, 300 Hz roofing filter)**							
Band/Preamp	Spacing	Input Level	Measured IMD Level	Measured IMD DR	Calculated IP3		
3.5 MHz Off	20 kHz	–17 dBm –11 dBm	–126 dBm –97 dBm	109 dB	+38 dBm +32 dBm		
14 MHz/Off	20 kHz	–12 dBm –5 dBm 0 dBm	-126 dBm -97 dBm -84 dBm	114 dB	+45 dBm +41 dBm +42 dBm		
14 MHz/Pre 1	20 kHz	–24 dBm –22 dBm	–136 dBm –97 dBm	112 dB	+34 dBm +28 dBm		
14 MHz/Pre 2	20 kHz	–36 dBm –22 dBm	–143 dBm –97 dBm	107 dB	+18 dBm +16 dBm		
14 MHz/Off	5 kHz	–12 dBm –6 dBm 0 dBm	–126 dBm –97 dBm –82 dBm	114 dB	+45 dBm +40 dBm +41 dBm		
14 MHz/Off	2 kHz	<mark>–12 dBm</mark> –6 dBm 0 dBm	<mark>-126 dBm</mark> -97 dBm -82 dBm	114 dB	+45 dBm +40 dBm +41 dBm		
50 MHz/Off	20 kHz	–14 dBm –8 dBm	-120 dBm -97 dBm	106 dB	+39 dBm +37 dBm		

RSGB – June 2010

RADCOM • JUINE 2010

EQUIPMENT REVIEW

TABLE 1: Yaesu FTDX5000 measured performance.

RECEIVER NEASUREMENTS, VTO-A

100 Pt. Pt. Pt. Pt.	SE		INPUT FOR 59			
FREQUENCY	IP01	PREAMP 1	PREAMP 2	1P01	PREAMP 1	PREAMP 2
1.88440	0.8u/i-109d8ml	D.2x/V1-121((Bm))	0.14u/r/i-124d8mb	12%/V	32,11	10,4
3.5MHz	O 649 (-11) dBml	0.16LV(-123d8m)	0.09L/V (-12808m)	14Q.M	35417	LOW
2Mi-4z	0.7ul/(-110dBnl)	0.18kW(-122dBm)	0.1aVI-127dBn1	14Q.V	3547	10,W
100012	CL Red (-10648-e)	0.22 V1.120d8m3	-0.11rW1-126dBm)	14Q/V	35µ/	10pV
14MHz	0.64V (-111dBm)	0.1B/VI-122dBm)	0.09(4/1-128(8m)	140.W	3547	10µV
LEMHY	0.24/(-110/8/0)	0.18/VI-122dBmJ	0.1uV(-L2708m)	140.W	35µV	19µV
21MHz	0.7/0/6110(88%)	0.18 VI-122dBml	0.0%//i-128d8ml	140LW	35LV	10/
24/04/	D.A.V.(-109-88-4)	0.2xVI-121dBm)	0.0%///i-128d8ml	340aN	354/	10/
2800-02	0.8/4/-109(8m)	0.7hW(-121dBm)	0.0%///1-128d9ml	340AV	3547	10//
SCMb-br	1.1x//-106dBm1	O.SuVY-118cBm0	0.11/0/1-1260800	340µV	30,07	B/V

	PANOWIDTH BOOF		BAND	ALCTH	
PREAMP 1	SET TO	-648	-601B	-7018	-8018
2.8k/V	2.4kHz/3kHz roof				
5 Call	Seen.	2507Hz	3044Hz	3101Hz	3142Hb
S.SLIV	Rend Lum	256 JHz	3349Hz	3344Hz	344294
18:00	Gentle	2683Hz	3710Hz	388942	4097Hz
15-W	500No/600No rent				
150-V	Chester	52546	66(34)	683/9/	767Hz
3 Family	Mediare	535H2	709Hg	745Hz	6491%
78mil	Gertle	558Hz	788Hz	852Hz	1020Hz
	PREAMP 1 2.5µ// 5.5µ// 5.5µ// 18µ// 35µ// 35µ// 35µ// 35µ// 35µ// 35µ// 35µ// 35µ//	PREAMP1 DANCWOT-RECOF 2.5µr 2.4µr 2.4µr(2)%Fr.cor 3.5µr 3mmp 3.6µr(2)%Fr.cor 3.5µr Median 3.5µr(2)%Fr.cor 3.5µr Median 5µr(2)%Fr.cor 3.5µr/V Median 5µr(2)%Fr.cor	PREAMP1 BARCWHDT-REODF 2.5µ/r 52.17 6d8 3.6µ/r 2.4A/2/3F4/r.rof 6d8 3.6µ/r 3mmp 210.7H2 3.6µ/r 3mmp 210.7H2 3.6µ/r 3mmp 210.7H2 3.6µ/r 3mmp 210.7H2 3.5µ/r 3004/r 2004/r 3.5mV Medium 2504/r 3.5mV Medium 535H2 75mv Gertin 528H2	BAROWEDT-ROOF BAROWEDT-ROOF BARO 2.5µr 2.4µr 2.4µr 648 40/8 3.5µr 2.4µr 2.4µr 2007Hz corf 3.0414 3.5µr 3.6µr 3000Hz corf 2607Hz 3.0444 3.0444 3.5µr 6001 2007Hz 3.0444 3.0444 3.0444 3.5µr 6001 2601Hz 3.2444 3.104rz 3.5µr 5004 500Hz 600Hz mof 505Hz 600Hz 3.5µr Medium 5.57Hz 709Hz 709Hz 3.5µr Medium 5.57Hz 709Hz 709Hz	BANDWIDT-ROOF BANDWIDT-ROOF BANDWIDT-ROOF 2.5µ/r 2.4µ/r 2.4µ/r 648 40/8 70/8 3.5µ/r 2.4µ/r 2.4µ/r 50/7 50/8 40/8 70/8 3.5µ/r 3.6µ/r 7000 200714 30/8 31/2 31/2 3.5µ/r 30044 300714 200714 30/8 31/2 31/2 3.5µ/r 5004/r 60047 200714 30/8 31/2 31/2 3.5µ/r 5004/r 6004 60047 50/8 31/2 31/2 3.5µ/r 5004/r 5004/r 50/9 50/9 31/2 7/2 3.5µ/r Medium 5/514/r 70940 7/4 45/14

3rd order

istercept.

+22.5dBm

126dBn

+ 24(Br)

+ 24dB

+22.5dBr

25400

PREAMP 1-

21010

10468

10348

PREAMP 2-

dynamic range

10048

100:05

100:6

3rd order 2 tone

intercept

+ 148m 90d8

+11d9m

+1849m

+12d3r

+13dilm

+12d8m

+12oBm 99dB

INTERMODULATION (1 Safet tone spacing) 2400 Hz bandwidth Gelfiz roof USB

dynami

105dB

104d8

103:09

134 54Bm 104rB

+37,568m 105d8

+33 diles

+36ctim

1.35dBm

Frequency Intercept

1.83/942

It sensitivity (28MHd) Preamp 1-1.3a/V
10dBs + n n at 30% mod depth
If scriptivity (28MHz) Preamp 1: 0.4W
12465 SINAD SkHz pk-deviation
Citiveshold Preamp1: 2/V
00e8 above AGE threshold for <1d8 audio
tputinoreane
SC attack time: 1-2ms
GC decay time: approx as specified
as aucto at 1% distortion: 3.5Winto 40
band intermodulation products40 to -50cB

ed with respectss PEP.

CLUSE-IN	15kHz RC	OFING	6kHz ROO	DFING	3kHz ROO	OFING	600Hz RO	OFING
Spacing	3rd order intercept	2 tone dyn range	3rd order intercept	2 tone dyn range	3rd order intercept	2 tone dyn range	3rd order intercept	2 tone dyn rang
0.5kHz	-8.5dBm	77dB	-8.5dBm	77dB	-5dBm	80dB	+30.5dBm	104dB
1kHz	-8.5dBm	77dB	-8.5dBm	77dB	+6.5dBm	88dB	+36.5dBm	108dB
1.5kHz	-8.5dBm	77dB	-8.5dBm	77dB	null	nul	+37dBm	109dB
2kHz	-8.5dBm	77dB	-4dBm	80dB	+33.5dBm	106dB	+37dBm	109dB
3kHz	-8.5dBm	77dB	+3.5dBm	85dB	+36.5dBm	108dB	+38dBm	109dB
4kHz	-2.5dBm	81dB	+24.5dBm	99dB	+37dBm	108dB	+38dBm	109dB
5kHz	null	null	+39.5dBm	109dB	+38dBm	109dB	+38dBm	109dB
71/Lis	1.21 5dBm	97dR	+ 30rtBm	109dB	+38dBm	109dB	+38dBm	109dB
10kHz	+38dBm	108dB	+39dBm	109dB	+ 38dBm	109dB	+38dBm	109dB
15kHz	+38dBm	10848	+38dBm	IOBOB	+380BM	10308	* South	10900
20kHz	+38dBm	108dB	+38dBm	108dB	+38dBm	109dB	+38dBm	10948

Yaesu Published Conditions

	-15kHz 80	OFING		OFING	3kHz ROI	OFING	600Hz R0	OFING	
	and order	2 tone	3rd order	2 tone	3nt order	2 tore	3nd order	2 tone	
Spacing i	Ideonetri	dyn range	intercept	dyn range	intercept	dyn tange	intercept	dys range	
1.54/6/	8.5#8m	77:18	-8.5d8m	77dB	-5cBm	8008	+30.5dBm	104d8	
Birtz .	8.5dEm	77d8	-8.5dBm	77cB	+6.508m	8808	+36.50Bm	-10008	-
1.54141	& Sellen	7748	-8.5d8m	77tB	nut	nut	+37dBm	10908	1000
260-62	RSdRm	7748	-66Bm	80(B	+33.5dBm	10648	+37dBn	109:68	
Sales .	-8 Selfer	77dB	+3.5dBm	85d8	+36.5dBm	108/9	+38d8m	. 109cB	
larty .	2 Dellim	81d8	+24.508m	9940	+ 57/80m	108/8	+3848-5	309(8	
1444	nil	mil	+39.5dBr	109:68	+38dBm	10958	+385011	20908	
TAPLE	171.5dBm	9748	+39cm	10948	+38d9m	10948	+3808/1	109d8	
(Della	+ Weiter	10949	+3908m	10948	+38d8m	10948	+38c8m	109dB	
No. NY	+ Mitchies	102949	+ 35(201)	105/08	+30/011	10948	+38:80	10960	
Brokin	+ 19-97	108/8	+ 78-98	10849	+ 38/8/1	10968	+38d8m	10908	
A6261	19-0-4	871	v-e /	S KING HIOOF	and Hour	22.000	-		
OAL PET	10.0.4			D King Horon		22.00	-		
3.3446	8600		itteas -	ici diten	32000	- Witnessen			
1 Martin	9000		10	scoon .	-33484	+ 64Bm			
200	100.00	10	040	Station	32/8/	+ Listikes			
per g	1124	100	100	21/2/2	-15dBet	+1448m			
SAME	11200	10	100	hiller.	+ 14/8m	+14/100			
LONING	11240	10	040	A-Bro	+ 15diles	+15(80)			
19690	111.45	1/2	0+0	1.348m	+15(90	+15d8m			
CONFIL	1/16.40	10	GANR .	15,tiken	+ 15(8)	+15-8m			
SORPO CONNY	1034	10	0.0	154Pm	+ 15dBm	+10c0m			
100.41	50.40	10	649	15/Em	+15dBm	+15dBm			
DMLH-	164B	10	148	15dles	+15dBm	+15d8m			
Contract	1000								
TRANSMIT	TER MEAS	REMENTS							
	CLASS	AS CLA	\$\$.A	INTE	RMOD. PRODUC				
	POWE	R POV	KER -CL	ASS AB-	-CLASS A				
FREDLEN	T OUTP	UT OUT	PUT 3/4/	5th ender	3rd/5th unker	HARMONK	CS Intern	nodulation produc	t levels are i
1.05042	200W	759	v -34	4649	-40-5648	<-304B			

• © Jeff Blaine AC0C 2011, all rights reserved

• 38

When Comparing Review Numbers...

- DR3 results vary with many conditions
- Conditions usually not consistent between reviewer
- Factors may include:
 - o DSP bandwidth (RSGB 500 hz vs. ARRL 300 hz)
 - o Roof bandwidth (RSGB 600 hz vs. ARRL 300 hz)
 - o IMD product measurement (RSGB AF voltmeter vs. ARRL 3 hz RBW SA)
 - o MDS floor (ARRL uses 3 different ones)
 - o Frequency of test (RSGB 7 Mhz vs. ARRL 14 Mhz)
 - Preamp setting (default, in both cases)
 - Preselector settings (IPO1, in both cases)
 - o Equipment and setup
 - o Measurement methods for one source may change over time

Rig Examples

Where the Roofs Are

Roofing Filter: FT-2000

Roofing Filter: FT-5000

Roofing Filter: K3

Roofing Filter: IC-7800 / IC-7700

A Secret Weapon

Free Insurance for your Roof

Secret Weapon: Use ATTN + Preamps Off

- No soldering iron required
- Free "virtual" DR3 improvement
- Set IPO mode (preamps off)
- Add ATTN

• IMD products drop by 3x the selected attenuation value!

Secret Weapon: Use ATTN

What the 3rd Mixer Sees – With varying ATTN

ATTN	IMD Level
-6 db	▼ 15 db
-12 db	▼ 30 db
-18 db	▼ 45 db

• © Jeff Blaine AC0C 2011, all rights reserved

Secret Weapon: Use Preamps With Caution

What the 3rd Mixer Sees – With varying PRE

Effect of PRE on IMD product levels ~ 3:1 ratio

PREAMP	IMD Level
IPO (no pre)	<baseline></baseline>
PRE 1 (+11 db)	▲ 30 db
PRE 2 (+17 db)	▲ 50 db

• © Jeff Blaine ACOC 2011, all rights reserved

Secret Weapon: Attenuation with Band

Lot 19 FT-2000D @ ACOC tested 7/21/2011

Band	Attn possible	IMD level drop by
160m	12-18 db	36-54 db
80m	12 db	36 db
40m	6-12 db	18-36 db
20m	6 db	18 db
15m	0-6 db	0-18 db
10m	0	0

- Shows ATTN switch range possible <u>without loss of useable</u> <u>sensitivity</u>
- Table ignores phase noise limits

Closing Thoughts

- Roofs serve a critical function → beware marketing spin
- Specs (DR3, etc) are hard to compare \rightarrow on 100% same-same basis
- Fact: Mid-tier modern rigs will give you the QSO in most cases \rightarrow use attenuation on the low bands when needed
- Personal testimonials ("buddy hype") are almost never unbiased
- Am I insuring for the possible exception or paying up for real utility?
- Sports vs. luxury outlook know your operating style
- Ergonomics and aesthetics ARE important
- The perfect rig has yet to be built
- Any rig is FB if you don't operate...

Thanks to the CADXA!

• © Jeff Blaine AC0C 2011, all rights reserved

Contact AC0C

Web: www.acØc.com

Email: jeff@acØc.com

© Jeff Blaine ACOC 2011, all rights reserved

References

- Rohde, Ulrich L., KA2WEU, Key Components of Modern Receiver Design Parts 1-3, QST May-Jul 1994
- Rohde, Ulrich L., KA2WEU, Key Components of Modern Receiver Design: A Second Look, QST Dec 1994
- Smith, Doug., KF6DX, Improved Dynamic Range Testing, QEX Jul/Aug 2002
- Asbrink, Leif, SM5BSZ, Blocking Dynamic Range in Receivers, QEX Mar/Apr 2006
- Rohde, Ulrich L., KA2WEU, Theory of Intermodulation and Reciprocal Mixing: Practice, Definitions and Measurements in Devices and Systems, Parts 1-2, QEX Nov/Dec 2002, Jan/Feb 2003
- Chadwick, Peter, G3RZP, HF Receiver Dynamic Range: How Much Do We Need?, QEX May/Jun 2002
- Cartoceti, Sergio, IK4AUY, A Doubly Balanced "H-Mode" Mixer for HF, QEX Jul/Aug 2004
- Sherwood, Rob, NCOB, Roofing Filters, Transmitted IMD and Receiver Performance, BARC 2008 presentation
- Hayward, Wes, W7ZOI, Campbell, Rick, KK7B, Larkin, Bob, W7PUA, Experimental Methods in RF Design, Revised First Edition, 2009
- Bakker, Martein, PA3AKE, WWW: martein.home.xs4all.nl/pa3ake/hmode/receiver_intro.html
- Rohde, Ulrich L., KA2WEU, Recent Advances in Receiver Design, QST Nov 1992
- Fishk, James, W1DTY, Receiver Noise Figure Sensitivity and Dynamic Range What the Numbers Mean, Ham Radio, Oct 1975
- Rauch, Tom, W8JI, WWW: <u>w8ji.com/receiver_tests.htm</u>
- WRTC 2010 Result Table, WWW: <u>wrtc2010.ru/result_table.php</u>
- Smith, Pete, N4ZR, World HF Contest Station Database, WWW: <u>conteststations.com</u>
- Anritsu, Intermodulation Distortion, Application Note 13, WWW: <u>downloadfile.anritsu.com/RefFiles/en-US/Services-Support/Downloads/Application-Notes/Application-Note/IMDanREVc.pdf</u>